

The Effects of Genes and Environment on Our Health

Our 46 and Our Environment

John Edgar (Jef) French, Ph.D. February 12, 2018

FOCUS OF THE NUTRITION RESEARCH INSTITUTE

Why do metabolism and nutrition *differ* between people?

Identify *how* our genes and environment change our responses to nutrition.

Precision Nutrition: the next frontier

Currently, 17 faculty scientists and their research teams are exploring how nutrition impacts some of today's most pressing health issues

Birth defects

۲

- Brain development
- **Obesity & Cancer** (HURSTING)
- Eye disease
- Fetal Alcohol Spectrum . **Disorders (SMITH)**

- Gout
- Heart disease (MEYER)
- Liver disease •
- Memory loss ٠
- Muscle function
 - Obesity

- Genome
- Epigenome
- Exposome
- Microbiome

Helix (Illumina spinoff)

- Maternal mitochondria markers
- Paternal Y-chromosome markers
- Whole genome exon sequencing
- Your DNA is proprietary
- Your DNA sequence can be shared with other specialists

Your Results

Helix Geno 2.0: John Edgar French

ADH1B; rs1229984; A/G, Protective for esophageal cancer.

Hunter Version

CYP1A2; rs762551; A/A, High metabolism; less stimulating variant.

Weight Gain from Saturated Fat

Weight Gain from Carbohydrates

Weight Gain from Dietary Fat

Using the mouse to model human disease: increasing validity and reproducibility

Monica J. Justice^{1,*} and Paraminder Dhillon² Disease Models & Mechanisms 9:101-103, 2016

From mouse to humans: a community effort

The Genes, Environment, and Health Initiative (GEI) 2006

Genetic Susceptibility - Linking Exposure to Disease

Human populations

1000 Genomes Project 88 million variants (SNP & SV)

Auton et al. Nature 526, 68-74 (2015) doi:10.1038/nature15393

Classical strain Diversity

Using the mouse to model human disease: increasing validity and reproducibility

Monica J. Justice^{1,*} and Paraminder Dhillon²

From mouse to humans: a community effort

Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

Aamir Zuberi and Cathleen Lutz ILAR Journal, 2016, Vol. 57, No. 2, 178–185

Collaborative Cross (CC) & Diversity Outbred (J:DO) Models

High-Resolution Genetic Mapping in the Diversity Outbred Mouse Population Identifies Apobec1 as a Candidate Gene for Atherosclerosis

Tangi L. Smallwood,* Daniel M. Gatti,[†] Pamela Quizon,[‡] George M. Weinstock,[§] Kuo-Chen Jung,* Liyang Zhao,** Kunjie Hua,* Daniel Pomp,*** and Brian J. Bennett^{*,‡,**,1}

Smallwood et al. G3 4:2353, 2014

	Baseline (AIN-76A)		High Protein		High-Fat, Cholic Acid	
	n	Mean	n	Mean	n	Mean
Cholesterol, mg/dL	277	91.7 ± 25.1	128	97.6 ± 31.5**	136	199.9 ± 68.6*,**
Triglycerides, mg/dL	262	59.5 ± 26.5	128	57.7 ± 30.8**	136	32.3 ± 12.1*,**
Glucose, mg/dL	257	155.2 ± 43.8	130	190.5 ± 49.9	137	177.9 ± 45.1
Insulin, ng/mL	235	0.8 ± 0.4	129	1.7 ± 1.1*	133	1.4 ± 0.7*

Table 1 Effects of high-protein, high-fat, cholic acid diets on cardiovascular risk factors in the DO mice

Obesity & Mammary Gland Cancer and Resistance to Chemotherapy

Steven Hursting, PhD, MPH

Melissa VerHague, PhD

The Obesity-Cancer Link: Lessons Learned from a Fatless Mouse

Stephen D. Hursting,^{1,2} Nomeli P. Nunez,¹ Lyuba Varticovski,³ and Charles Vinson⁴

www.aacrjournals.org

Michael Coleman, PhD

Alcohol Toxicity and Fetal Alcohol Syndrome Disorder

Susan M. Smith, PhD

George Flentke, PhD

Eneda Pjetri, MD, PhD

frontiers in Genetics

Obesity and Cardiovascular Disease

Microbiota-Dependent Metabolite Trimethylamine N-Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA)

Katie A. Meyer, ScD, MPH; Thomas Z. Benton, BA; Brian J. Bennett, PhD; David R. Jacobs, Jr, PhD; Donald M. Lloyd-Jones, MD, SM; Myron D. Gross, PhD; J. Jeffrey Carr, MD, MSc; Penny Gordon-Larsen, PhD; Steven H. Zeisel, MD, PhD

Katie Meyer, ScD

John Shea

Salvadore Fabela, PhD

(J Am Heart Assoc. 2016;5:e003970 doi: 10.1161/JAHA.116.003970)

MDS1

Funding

National Institutes of Health (NIH) and NIEHS studies – MDP & DO mice studies were supported by the Intramural research programs of the US National Toxicology Program and NIEHS N01-ES-45529, 5T32ES007091-29, P30-ES 06694, and NCI CA023074 to the University of Arizona

CC AIRILs - NIH U01CA134240, P50MH090338, P50HG006582, and U54AI081680;

Ellison Medical Foundation grant AG-IA-0202-05, National Science Foundation grants IIS0448392, IIS0812464, the Australian Research Council grant DP-110102067, and the Wellcome Trust grants 085906/Z/08/Z, 083573/Z/07/Z, and 090532/Z/09/Z. Essential support was also provided by the Dean of the University of North Carolina (UNC) School of Medicine, the Lineberger Comprehensive Cancer Center at UNC, and the University Cancer Research Fund from the state of North Carolina, and from the Tel-Aviv University for core funding and technical support.

DO mice - **The Jackson Laboratory** and **NIH** Grants GM076468 and GM070683 to G.A.C. and by NIH grants R01DA021336, R21DA024845, and R01MH079103, the **Schweppe Foundation**, and the **UNC Nutritional Research Institute**.